2019年6月13日 星期四
今日温州天气: 温度
返回首页·设为首页·加入收藏
   
关于我们 政策解读 新闻动态 百问百答 为你筹划 他山之石 古今中外 地理风水 会员之家 百家争鸣 会计问答 联系我们
欢迎光临金钥匙纳税筹划网,您是本站第 位客人!
     地理风水
  天文常识
  科普知识(科幻小说)
 用户名:
 密 码:
 验证码: 看不清楚,点一下
  
代理记账行业将迎来发展新契机
会计制度与税收制度100讲(中级班)…
招聘进出口贸易业务员的通知
回首千年话沧桑—公元11—20世纪会…
专题讲座(四):会计制度与税收政…
会计数字大写从何而来
上海滩的会计传奇——娄尔行
忆伊情
拜谒“将军石”
新八仙的故事
 
 当前位置:金钥匙纳税筹划网 >> 地理风水 >> 天 文 >> 天文常识
   天文常识
第七讲 牛顿与经典力学、爱因斯坦与相对论、霍金与黑洞
发表日期:2010/3/1 来源:金钥匙 浏览 645389 次
第七讲  牛顿与经典力学、爱因斯坦与相对论、霍金与黑洞
 
(一)牛顿
   牛顿1642年12月25日生于林肯夏郡沃斯索普村一个农民家庭,牛顿在出生前3个月父亲便去世了,3岁时母亲改嫁,他由外祖母抚养。1654年牛顿开始读
小学,后在舅父的资助下进入格兰山姆镇皇家中学。1661年进入剑桥大学三一学院。1663年,三一学院创办自然科学讲座,牛顿成为了数学家伊萨克枣巴罗
(Isaac Barrow, 1630-1677)教授的学生,1664年成为巴罗的助手。1665年获文学学士学位,1665年至1667年为躲避瘟疫回到家乡。1667年牛顿又
回到剑桥大学,并被选为选修课的教研员。1668年3月任专修课教研员,同年获硕士学位。1669年巴罗辞去职务,以让牛顿晋升为数学教授。1670年牛顿又
担任了卢卡斯讲座教授。1672年他被选为皇家学会会员,此后一直在剑桥大学工作。1689年被选为代表剑桥大学的国会议员。1696年他被任命为造币厂督办,
迁居伦敦。1699年担任了造币厂厂长。1701年牛顿辞去剑桥大学教授职位,退出三一学院。1703年被选为皇家学会会长。1705年受封勋爵,成为贵族。1727
年3月20日逝世于肯新顿村,终年85岁,终生未娶。
   牛顿是科学发展史上举世闻名的巨人。他奠定了近代科学理论基础,是以正确的思维方法指导科学研究的代表。他是一位自强、勤奋的“天才”,为世界自
然科学的发展作出了不可磨灭的贡献,成为近代科学的象征。他的科学贡献代表了当时新生资产阶级的利益,因为他为他的国家作出了巨大贡献,死后葬于威
斯敏斯特教堂。
   少年时期的牛顿,便显示出了出众的才能。他所精心制作的许多小机械,如风车、风筝、滴漏时钟、日圭仪等,引起了多人的注重和好评。牛顿的一生大部
分时间从事科学实践、教学和理论的研究。从1672年他发表第一篇论文起,一生写出了多部极其著名的著作,如1686年写成,1687年出版的《自然哲学的数
学原理》、1704年出版的《光学》等,在科学史上都具有重要价值。他在数学、物理学、天文学等多方面创造了惊人的奇迹。在数学方面,牛顿是微积分的创
始人之一,同莱布尼兹一道名垂千古。1665年,牛顿在23岁时便发现了“二项式定理”和“流数法”,“流数法”就是现代所说的微分法。同时他还发现了流
数法反演,即积分法。微积分的创立,是近代数学史上的一次重大变革,是真正的变量数学,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
   经典力学主要是由牛顿创立和完成的。因此,也可称为牛顿力学。它采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。但它有很大局限性,
只适用于物体运动速度远小于光速的范围。
     经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。随着物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。下面我们重温一下牛顿的三个基本定律。
     牛顿第一定律。牛顿总结了伽利略等人的研究成果,概括出:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态.这就是牛顿第一定律。牛顿第一定律是通过分析事实、再进一步概括、推理得出的。虽然不可能用实验来直接验证这一定律,但是,从定律得出的一切推论,都经受住了实践的检验,因此,牛顿第一定律已成为大家公认的力学基本定律之一。
      牛顿第二运动定律。定律内容:物体的度跟物体所受的合外力F成正比,跟物体的成反比,的方向跟合外力的方向相同。而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之变化率和所受外力之和成正比”。牛顿第二定律说明:(1)力和加速度同时产生、同时变化、同时消失;(2)F=ma是一个方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向;(3)力是产生加速度的原因,力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。(4)自然界中存在着一种,在这种坐标系中,当物体不受力时将保持或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,只在惯性参照系中才成立。
     牛顿第三定律。两个物体之间的作用力和反作用力,总是同时在同一条直线上,大小相等,方向相反。说明:①力的作用是相互的,同时出现,同时消失;②相互作用力一定是相同性质的力;③作用力和反作用力作用在两个物体上,产生的作用不能相互抵消;④作用力也可以叫做反作用力,只是选择的参照物不同;⑤作用力和反作用力因为作用点不在同一个物体上,所以不能求合力。因此,要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。
    但是在体系中,与第三定律密切相关的动量守恒定律,却是一个普遍的自然规律.在有参与的情况下,动量的概念应从实物的动量
扩大到包含场的动量;从实物粒子的机械动量守恒扩大为全部粒子和场的总动量守恒,从而使动量守恒定律成为普适的守恒定律。
   牛顿在天文学上的另一重要贡献是对行星的运动规律进行了全面考察,特别是对开普勒等人的学说进行过系统的研究。1686年他在给哈雷的信中说明了
天体可以按照质点处理并证明了开普勒的行星运动的椭圆形轨道以及彗星的抛物线轨道。牛顿还进一步发展了自己的理论,认为行星都由于自转而使两极扁平
赤道突出,还预言地球也是这样的球体。由于地球不是正球体,牛顿就指出,太阳和月球的引力摄动将不会通过地球中心,因此地轴将作一缓慢的圆锥运动,
这便出现了二分点的岁差现象。对于潮汐现象,牛顿也作出了解释,他认为这是太阳和月球引力造成的。
    在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过
量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间
指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,
时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿
在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是
具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必
受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概
念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。
   在热学方面,牛顿确立了冷却定律。他指出:当物体表面与周围存在温度差时,单位时间内从单位面积上散失的热量与这一温度差成正比。
   在光学方面,牛顿同样取得了巨大成果。牛顿是白光组成的最早发现者,1666年他利用三棱镜进行了著名的色散实验,发现白光可以分解为多种颜色的光
谱带。同时他还作出了多色光合成白光的实验。牛顿对各色光的折射率进行了精确分析,说明了色散现象的本质。他指出,由于物质对不同颜色光得折射率
和反射率不同,才造成了物体颜色的差别,从而揭开了颜色之谜。对于光的本性,牛顿提出了光的“微粒说”。他的观点一定程度上反映了光的本质。他认为,
光是由微粒形成,并且走的是快速的直线运动路径。应用光的微粒说可以很好地解释光的反射和折射现象,但对于衍射现象却无能为力。微粒说是关于光的本
性的重要理论之一,他同惠更斯的波动说共同构成了关于光的两大基本理论。现代科学证明,任何物质都具有波粒二象性。牛顿在光学方面还有许多发现和研
究成果。如1666年他制作了牛顿色盘;1675年曾利用凸透镜和平板玻璃观察到了一种干涉图样,称为牛顿环等。他对牛顿环进行过精细的测量,但是没有能
够作出满意的解释。
  牛顿对于宇宙的解释也是和笛卡儿等人一样,承认神是“第一推动力”,后来的牛顿可以说完全陷入了唯心主义。他的全部成就几乎都是在45岁以前取
得的,尤其集中在23岁以前。以后的四十年中则完全陷入了对神学的研究。这是牛顿在哲学和科学上的局限性。
(二)爱因斯坦与相对论
 
   艾伯特·爱因斯坦于1879年3月14日在德国小城乌尔姆出生,他的父母都是犹太人。爱因斯坦有一个幸福的童年,他的父亲是位平静、温顺的好
心人,爱好文学和数学。他的母亲个性较强,喜爱音乐,并影响了爱因斯坦,爱因斯坦从六岁起学小提琴,从此小提琴成为他的终生伴侣。爱因斯坦的父母
对他有着良好的影响和家庭教育,家中弥漫着自由的精神和祥和的气氛。 
   和牛顿一样,爱因斯坦年幼时也未显出智力超群,相反,到了四岁多还不会说话,家里人甚至担心他是个低能儿。六岁时他进入了国民学校,是一个十
分沉静的孩子,喜欢玩一些需要耐心和坚韧的游戏,例如用纸片搭房子。1888年进入了中学后,学业也不突出,除了数学很好以外,其他功课都不怎么样,
尤其是拉丁文和希腊文,他对古典语言毫无兴趣。当时的德国学校必须接受宗教教育,开始时爱因斯坦非常认真,但当他读了通俗的科学书籍后,认识到宗
教里有许多故事是不真实的。12岁时他放弃了对宗教的信仰,并对所有权威和社会环境中的信念产生了怀疑,并发展成一种自由的思想。爱因斯坦发现周围
有一个巨大的自然世界,它离开人类独立存在,就象一个永恒的谜。他看到,许多他非常尊敬和钦佩的人在专心从事这项事业时,找到了内心的自由和安宁。
于是,少年时代的爱因斯坦就选择了科学事业,希望掌握这个自然世界的奥秘,而一旦选择了这一道路,就坚持不懈地走了下去,从来没有后悔过。 
  1895年,爱因斯坦来到瑞士苏黎世,准备投考苏黎世的联邦工业大学,虽然他的数学和物理考得很不错,但其他科目没有考好,学校校长推荐他去瑞士
的阿劳州立中学学习一年,以补齐功课。在阿劳州立中学的这段时光中使爱因斯坦感到快乐,他尝到了瑞士自由的空气和阳光,并决心放弃德国国籍。 
   1896年,爱因斯坦正式成为一个无国籍的人,并考进了联邦工业大学。大学期间,爱因斯坦迷上了物理学,一方面,他阅读了德国著名物理学家基尔霍
夫、赫兹等人的著作,钻研了麦克斯韦的电磁理论和马赫的力学,并经常去理论物理学教授的家中请教。另一方面,他的大部分时间是去物理实验室去做实验,
迷恋于直接观察和测量。1900年,爱因斯坦大学毕业。1901年,他获得了瑞士国籍。1902年,在他的朋友格罗斯曼的帮助下,爱因斯坦终于在伯尔尼的瑞士
联邦专利局找到了一份稳定的工作——当技术员。 
   早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界
景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗? 
   与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入
科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物
质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的
微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传
播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动
力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太
不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。 
   但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁
学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒
量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一
辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。
但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。
麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢? 
  19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显
示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著
名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一
生献给这门学科,太可惜了。” 
  爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形
成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理
论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究
爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要
有荷载物吗? 
   爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却
无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有
同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就
是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留
下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。
突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了
一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在
人们面前。 
   1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇
文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相
对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、
绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,
所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参
照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光
速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动
力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再
是必要的,以太漂流是不存在的。 
   光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同
时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在
火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在
同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因
为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同
时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。 
   相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生
活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。 
   爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的
质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。 
   1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱
因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。 
   1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱
因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年
当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。 
   此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的
物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的
场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑
上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生子佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以
接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,
飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处
理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对
论。 
   1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱
因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替
加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引
力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。 
   1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场
方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先
将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定
律必须对于无论哪种方式运动着的参照系都成立。 
   爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,
很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测
中证实了这一点。广义相对论的第三大预言是引力场使光线偏转。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生
一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附
近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家学会会长汤姆
孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”。爱因斯坦成了新闻人物,
他在1916年写了一本通俗介绍相对论的书《狭义相对论与广义相对论浅说》。 
   相对论的基本假设是
,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(
系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在的假设下,广泛应用于引力场中。相对论和是现代物理学的
两大基本支柱。基础的,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。
相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“”、“”等全新的概念。狭义相对论提出于1905年
,广义相对论提出于1915年[爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文]。
    狭义相对论最著名的推论是,它可以用来计算核反应过程中所释放的能量,并导致了的诞生。而广义相对论结论就是:四维弯曲时空,有限无
,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。
   相对论应用的并不是普通的,而是。相信很多人都知道非欧几何,它分为与黎氏几何两种。黎曼从更高的角度统一了三
种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无
用的理论。直到在球面几何中发现了它的应用才受到重视。相对论预言了引力波的存在,发现了与引力波都是以光速传播的,否定了万有引力定律的超
距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个,被称为
坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时认为,宇宙是无限的,静止的,恒星也是无限的。于是他不
惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,
放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,
宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学
中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值
得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重
视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。
狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类
思相的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了
牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。
广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变
的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了
时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。 
   一位法国物理学家曾经这样评价爱因斯坦:在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最有光辉的巨星之
一,按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更加深入地进入了人类思想基本要领的结构中。
(三)霍金与黑洞
 
史蒂芬·霍金是英国剑桥大学应用数学和理论物理系的终身教授,现年64岁。霍金出生于1942年1月8日,这个时候他的家乡伦敦正笼罩在希特勒的
狂轰滥炸中。霍金和他的妹妹在伦敦附近的几个小镇度过了自己的童年。霍金的父母都受过正规的大学教育。他的父亲是一位从事热带病研究的医学
家,母亲则从事过许多职业。小镇的居民经常会惊异地看到霍金一家人驾驶着一辆破旧的二手车穿过街道奔向郊外──汽车在当时尚未进入英国市民
家庭。然而这辆古怪的车子却拓展了霍金一家自由活动的天地。霍金热衷于搞清楚一切事情的来龙去脉,因此当他看到一件新奇的东西时总喜欢把它
拆开,把每个零件的结构都弄个明白──不过他往往很难再把它装回原样,因为他的手脚远不如头脑那样灵活,甚至写出来的字在班上也是有名的潦草。
霍金在17岁时进入牛津大学学习物理。他仍旧不是一个用功的学生,而这种态度与当时其他同学是一致的,这是战后出现的青年人迷惘时期——他们
对一切厌倦,觉得没有任何值得努力追求的东西。霍金在学校里与同学们一同游荡、喝酒、参加赛船俱乐部,如果事情这样发展下去,那么他很可能
成为一个庸庸碌碌的职员或教师。然而,病魔出现了。从童年时代起,运动从来就不是霍金的长项,几乎所有的球类活动他都不行。到牛津的第三年,
霍金注意到自己变得更笨拙了,有一两回没有任何原因地跌倒。一次,他不知何故从楼梯上突然跌下来,当即昏迷,差一点死去。直到1962年霍金在
剑桥读研究生后,他的母亲才注意到儿子的异常状况。刚过完21岁生日的霍金在医院里住了两个星期,经过各种各样的检查,他被确诊患上了“卢伽
雷氏症”,即运动神经细胞萎缩症。大夫对他说,他的身体会越来越不听使唤,只有心脏、肺和大脑还能运转,到最后,心和肺也会失效。霍金被“宣
判”只剩两年的生命。那是在1963年。起初,这种病恶化得相当迅速。这对霍金的打击是可想而知的,他几乎放弃了一切学习和研究,因为他认为自
己不可能活到完成硕士论文的那一天。然而,一个女子出现了。她叫简·瓦尔德。1962年的夏天,简通过朋友,认识了走路笨拙、脚步踉跄的霍金,后
来又发生了几次偶遇。于是,他们碰到了爱情。但是,他们的爱情却多了一丝苦涩。霍金对自己的病感到无望,因此不打算建立长期稳定的关系。他们
之间总是存在着一个第三者—死神。然而,爱情的力量却无法抗拒。第二年7月14日,简和霍金结了婚。多年之后,简在自己的回忆录《音乐移动群星》
中写道:“我非常爱他,任何东西都不能阻止我和他结婚,我愿意为他做饭、洗衣、购物和收拾家务,放弃我自己以前的远大志向。”与简的订婚使霍
金的生活发生了真正的变化。为了结婚,他需要一份工作,为了得到工作,就需要一个博士学位。因此,他开始了一生中的第一次用功。令他十分惊讶
的是,他发现自己很喜欢研究。爱情有了圆满的结局。然而,轮椅出现了。霍金的病情渐渐加重。1970年,在学术上声誉日隆的霍金已无法自己走动,
他开始使用轮椅。直到今天,他再也没离开它。永远坐进轮椅的霍金,极其顽强地工作和生活着。1991年3月,霍金在一次坐轮椅回柏林公寓,过马
路时被小汽车撞倒,左臂骨折,头被划破,缝了13针,但48小时后,他又回到办公室投入工作。又有一次,他和友人去乡间别墅,上坡时拐弯过急,
轮椅向后倾倒,不料这位引力大师却被地球引力翻倒在灌木丛中。虽然身体的残疾日益严重,霍金却力图像普通人一样生活,完成自己所能做的任何事
情。他甚至是活泼好动的──这听来有点好笑,在他已经完全无法移动之后,他仍然坚持用惟一可以活动的手指驱动着轮椅在前往办公室的路上“横冲
直撞”;在莫斯科的饭店中,他建议大家来跳舞,他在大厅里转动轮椅的身影真是一大奇景;当他与查尔斯王子会晤时,旋转自己的轮椅来炫耀,结果
轧到了查尔斯王子的脚趾头。当然,霍金也尝到过“自由”行动的恶果,这位量子引力的大师级人物,多次在微弱的地球引力左右下,跌下轮椅,幸运
的是,每一次他都顽强地重新“站”起来。
   70年代他与彭罗斯一起证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想
家和最杰出的理论物理学家。他还证明了黑洞的面积定理,即随着时间的增加黑洞的面积不减。这很自然使人将黑洞的面积和热力学的熵联系在一起。
1973年,他考虑黑洞附近的量子效应,发现黑洞会像黑体一样发出辐射,其辐射的温度和黑洞质量成反比,这样黑洞就会因为辐射而慢慢变小,而温
度却越变越高,它以最后一刻的爆炸而告终。黑洞辐射的发现具有极其基本的意义,它将引力、量子力学和统计力学统一在一起。1974年以后,他的
研究转向量子引力论。虽然人们还没有得到一个成功的理论,但它的一些特征已被发现。例如,空间-时间在普郎克尺度(10-33厘米)下不是平坦的,
而是处于一种泡沫的状态。在量子引力中不存在纯态,因果性受到破坏,因此使不可知性从经典统计物理、量子统计物理提高到了量子引力的第三个层
次。1980年以后,他的兴趣转向量子宇宙论。 2004年7月,霍金修正了自己原来的“黑洞悖论”的不正确观点,信息应该守恒。
1985年,霍金动了一次穿气管手术,从此完全失去了说话的能力。他就是在这样的情况下,极其艰难地写出了著名的《时间简史》,探索着宇宙的起
源。霍金取得巨大成功,但生活的现实取代了爱情的浪漫,他和简的婚姻走到了尽头。
   霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一,他的贡献是在他20年之久被卢伽雷病禁锢在轮椅上的情况下做
出的,这真正是空前的。因为他的贡献对于人类的观念有深远的影响,所以媒介早已有许多关于他如何与全身瘫痪作搏斗的描述。所以说,上帝对每个
人都是很公平的。他有身体上的缺陷,可头脑聪明的很!他要用很大努力才能举起头来。在失声之前,只能用非常微弱的变形的语言交谈,这种语言只
有在陪他工作、生活几个月后才能通晓。他不能写字,看书必须依赖于一种翻书页的机器,读文献时必须让人将每一页摊平在一张大办公桌上,然后他
驱动轮椅如蚕吃桑叶般地逐页阅读。人们不得不对人类中居然有以这般坚强意志追求终极真理的灵魂从内心产生深深的敬意。他是一位富有人情味的人。
每天他必须驱动轮椅从他的家——剑桥西路5号,经过美丽的剑河、古老的国王学院驶到银街的应用数学和理论物理系的办公室。该系为了他的轮椅行
走便利特地修了一段斜坡。在富有学术传统的剑桥大学,他目前担任着也许是有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡逊数学教
授。
  霍金一生最伟大的贡献是对黑洞研究和宇宙的新解。
黑洞是什么?黑洞是预言的一种特别致密的暗天体]。大质量在其演化末期发生塌缩,其物质特别致密,它有一个称为“”的
边界,黑洞中着巨大的,因引力场特别强以至于包括光子在内的任何物质只能进去而无法逃脱。黑洞必须是一颗质量大于极限的
到末期而形成的,质量小于的恒星是无法形成黑洞的,取出形成黑洞的星核质量下限相当于3倍,当然,这是最后的
星核质量,而不是恒星在主序时期的质量。除了这种恒星级黑洞,也有其他来源的黑洞——所谓微型黑洞可能形成于宇宙早期,而所谓超大质量黑洞可
 
能存在于中央。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能
通过受其影响的周围物体来间接了解黑洞。虽然这么说,但黑洞还是有它的边界,即“(视界)”。用物理学观点通俗地解释,黑洞其实也是
,是死亡恒星的演化物,是在特殊的大质量坍缩时产生的。只不过它的密度极大,靠近它的物体都被它的引力所约束,就好像人在地球上
如果以来飞行就可以逃离地球,但人没有这个速度,所以不能离开地球。但是对于黑洞来说,它的第二宇宙速度要超越光速,光速已经是
极限速度了,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。
自从黑洞理论提出以来,爱因斯坦和霍金都肯定了黑洞的存在,绝大多数科学家都致力于寻找黑洞确切存在的证据来完善黑洞理论,美国航空航天局甚
至要给附近的黑洞做“人口普查”。与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,那么,黑洞是怎么把
自己隐藏起来的呢?答案就是—弯曲的空间。根据广义相对论,空间会在引力场作用下弯曲,这时候,光虽然仍然沿任意两点间的最短距离传播,但走
 
的已经不是直线,而是曲线,在经过大密度的天体时,四维空间会弯曲,光会掉到这样的陷阱里。形象地讲,好像光本来是要走直线的,只不过强大的
引力把它拉得偏离了原来的方向。在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被
黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观
察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发
射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背。
据霍金猜测,为数众多的小原生黑洞,可能是200亿年前宇宙诞生的大爆炸中产生的。霍金以数学计算的方法证明黑洞由于质量巨大,进入其边界的,
也即所谓“活动水平线”的物体都会被其吞噬而永远无法逃逸。黑洞形成后,就开始向外辐射能量,最终将因为质量丧失殆尽而消失。2004年7月21
日,霍金向学术界宣布了他对黑洞研究的最新成果。他认为,黑洞不会将进入其边界的物体的信息淹没,反而会将这些信息“撕碎”后释放出去。该
一理论的提出,说明霍金推翻了近30年前他自己提出的“黑洞悖论”。
有人把黑洞分为两大类。一是黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量
以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看“宇宙黑洞论”。暗能量黑洞是星系形成的基础,也是
星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,称之为
暗能量黑洞的体积很大,可以有那般大。它的比起暗能量黑洞来说体积非常小,它甚至可以缩小到一个奇点。1972年,美国普林斯顿大学青年
研究生贝肯斯坦提出黑洞"":星体坍缩成黑洞后,只剩下质量,角动量,电荷三个基本守恒量继续起作用。其他一切因素("毛发")都在进入黑
洞后消失了。这一定理后来由霍金等四人严格证明。
根据黑洞的物理特性,可将黑洞分为四类。(1)不旋转不带电荷的黑洞。它的时空结构于1916年由施瓦西求出称施瓦西黑洞。(2)不旋转带电黑洞,
称R-N黑洞。时空结构于1916-1918年由赖斯纳和纳自敦求出。(3)旋转不带电黑洞,称。时空结构由克尔于1963年求出。(4)一般黑洞,
称克尔-纽曼黑洞。时空结构于1965年由求出。
寻找黑洞。因为黑洞是黑的,要找到它们实在是很困难。但是里的黑洞比较容易找到,双星就是两颗互相饶着转的恒星.虽然我们看不见黑洞,但
却能从那颗看的见的恒星的运动路线分析出来.。因为,双星中的每一个星都是沿着椭圆形路线运动的,而单颗的恒星不是这样运动。如果我们看到天空
中有颗恒星在沿椭圆形路线运动,却看不到它的'同伴',我们就可以把那颗星走的椭圆的大小,走完一圈用的时间,测量出来.,这样就可以算出那个看不
见的'同伴'的质量有多大。如果算出来质量很大,超过中子星的质量,那就可以进一步证明它是个黑洞了。在天鹅星座,有一对双星,名叫.
这对双星中,一颗是看的见的亮星,另一颗却看不见.根据那可亮星的运动路线.可以算出来它的'同伴'的质量很大,至少有太阳质量的五倍.这么大的质量
 
是任何中子星都不可能有的.当然,除这些以外还有别的证据。所以,基本上可以肯定,天鹅座X-1中那个看不见的天体就是一个黑洞.这是人类找到的
第一个黑洞。另外,黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星
系。即使到了今天,恒星依然是由在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周
围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散
.。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体
接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证
据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
黑洞的蒸发(死亡)。由于黑洞的密度极大,根据公式我们可以知道密度=质量÷体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然
后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量很大,体积很小。由于黑洞无限吸引,但是总会有质子
逃脱黑洞的束缚,这样日积月累,黑洞就慢慢的蒸发,到了最后就成为了白矮星,或者,它爆炸所产生的冲击波足以让地球毁灭1018万亿次以
上。科学家经常用天文望远镜观看的画面。它爆炸所形成的尘埃是形成恒星的必要物质,这样就能初步解决太阳系形成的答案了。现在,在
我们的星系中和邻近两个名叫的星系中,还有几个类似天鹅X-1的黑洞的证据。然而,几乎可以肯定,黑洞的数量比这多得多了!在宇
宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了。黑洞的数目甚至比可见恒星的数目要大得相当多。单就我们的星系中,大约总共
有1千亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动速率,单是可见恒星的质量是不足够的。我们还有
 
某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的10万倍。星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上
的引力之差或会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去。正如同在天鹅X-1情形那样,气体将以螺旋形轨道向里
运动并被加热,虽然不如天鹅X-1那种程度会热到发出X射线,但是它可以用来说明星系中心观测到的非常紧致的射电和红外线源。
史迪芬.霍金于1974年预言:黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。此预言震动整个科学界。霍金的理论是受灵感支配的思维的飞
跃,他结合了广义相对论和。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量,我们可以认定一对粒子会在任何时刻、
任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入
洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我
们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可
视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc2表明,
能量的损失会导致质量的损失。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质
量损失得更快。这种“”对大多数黑洞来说可以忽略不计,因为大的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆
炸。当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星
的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发
一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西
可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但
是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比一秒钟稍长一点
的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间
飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,
最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间
飞船上,使飞船继续绕着所形成的黑洞旋转。
   黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,
经常是反对黑洞的主要论据:你怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?然而,1963年,加利福尼亚的帕罗玛天
台的天文学家马丁·施密特测量了在称为3C273(即是剑桥射电源编目第三类的273号)射电源方向的一个黯淡的。他发现引力场不
能引起这么大的红移—如果它是引力红移,这类星体必须具有如此大的质量,并离我们如此之近,以至于会干扰太阳系中的行星轨道。这暗示此
红移是由宇宙的膨胀引起的,进而表明此物体离我们非常远。由于在这么远的距离还能被观察到,它必须非常亮,也就是必须辐射出大量的能量。
人们会想到,产生这么大量能量的唯一机制看来不仅仅是一个恒星,而是一个星系的整个中心区域的引力坍缩。人们还发现了许多其他类星体,它
们都有很大的红移。但是它们都离开我们太远了,对之进行观察太困难,以至于不能给黑洞提供结论性的证据。
霍金的开放宇宙新理论。20世纪的天文观测表明,宇宙正处于膨胀的演化过程中。在时间上往过去反推,人们估计在100多亿年前宇宙是处于
极其紧致极其炽热的所谓大爆炸奇性的状态。宇宙的演化必须服从爱因斯坦引力场方程。但是不同的初始状态会导致不同的演化。大爆炸奇性从何
而来或者宇宙从何而来的所谓第一推动问题就摆到了宇宙学家的面前。80年代初,科学家们提出了所谓的暴涨宇宙模型。在大统一破缺之后,宇宙
有一个以指数形式膨胀的阶段。由于这种暴涨,相当任意选取的初始条件都会导致和今天观察到的宇宙大致相等的结果:宇宙是非常平坦的,均匀
的,各向同性的,以及宇宙中物质分布的模式,如星系团、星系、恒星和生命形成等等。但是人们必须为暴涨理论本身选取一些合适的参数。这样
宇宙初始条件的选取被转变为这些参数的选择。人们仍然没有彻底解决第一推动的问题,只不过是在一定程度上减弱了这个问题的尖锐性而已。真
正解决第一推动问题的是霍金提出的无边界条件的量子宇宙论。在他的理论中,宇宙的诞生是从一个欧氏空间向洛氏时空的量子转变,这就实现了
宇宙的无中生有的思想。这个欧氏空间是一个四维球。在四维球转变成洛氏时空的最初阶段,时空是可由德西特度规来近似描述的暴涨阶段。然后
膨胀减缓,再接着由大爆炸模型来描写。这个宇宙模型中空间是有限的,但没有边界,被称作封闭的宇宙模型。从霍金1982年提出这个理论之后,
乎所有的量子宇宙学研究都是围绕着这个模型展开。这是因为它的理论框架只对封闭宇宙有效。
如果人们不特意对空间引入人为的拓扑结构,则宇宙空间究竟是有限无界的封闭型,还是无限无界的开放型,取决于当今宇宙中的物质密度产生
引力是否足以使宇宙的现有膨胀减缓,以至于使宇宙停止膨胀,最后再收缩回去。这是关系到宇宙是否会重新坍缩或者无限膨胀下去的生死攸关
问题。可惜迄今的天文观测,包括可见的物质以及由星系动力学推断的不可见物质,其密度总和仍然不及使宇宙停止膨胀的1/10。不管将来进一
步的努力是否能观测到更多的物质,无限膨胀下去的开放宇宙的可能性仍然呈现在人们面前。可以想象,许多人曾尝试将霍金的封闭宇宙的量子论
推广到开放的情形,但始终未能成功。今年2月5日,霍金及图鲁克在他们的新论文“没有假真空的开放暴涨”中才部分实现了这个愿望。他仍然
利用四维球的欧氏空间,由于四维球具有最高的对称性,在进行解析开拓时,也可以得到以开放的三维双曲面为空间截面的宇宙。这个三维双曲面
空间遵循爱因斯坦方程继续演化下去,宇宙就不会重新收缩,这样的演化是一种有始无终的过程。霍金发表了这论文之后立即得到了国际学术界的
反响。之后的20天(即2月25日),他又写了一篇短文为他的一些计算进行辩护。
封闭宇宙的重新坍缩会把世上的一切再次带回到极高温的大挤压状态。而开放宇宙的无限膨胀的前景也不甚美妙,宇宙将无限冷却下去。尽我所
知,迄今没有人设想过如何避免这两种世界末日的来临,因为它将发生于极其遥远的将来。
   霍金的生平是非常富有传奇性的,他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”。尽管他那么无助地坐在轮椅上,
他的思想却出色地遨游到广袤的时空,解开了宇宙之谜。在科学成就上,他是有史以来最杰出的科学家之一。霍金一生的贡献是,在经典物理的框
架里,证明了黑洞和大爆炸奇点的不可避免性,黑洞越变越大;但在量子物理的框架里,他指出,黑洞因辐射而越变越小,大爆炸的奇点不但被量
子效应所抹平,而且整个宇宙正是起始于此。
返回 打印
网站首页  关于我们  会员之家  论坛交流  会计问答  联系我们
Copyright 2009 Golden key tax planning All Rights Reserved
第七讲 牛顿与经典力学、爱因斯坦与相对论、霍金与黑洞-金钥匙纳税筹划网 版权所有 2009 本站通用网址:http://www.jysnsch.com
电子邮箱:[email protected] 浙ICP备123456789号