为什么要研究暗物质?
如果暗物质存在的话,我们的宇宙世界实在是不可思议的了.因为,在宇宙中,仅可见之物质已经是如此的纷繁复杂,奥妙迷乱,令人叹为观止.暗物质如果确实存在的话,就是相当于与我们可见宇宙同时存在着另一个更为广大更为复杂的物质世界.那将是真正的大千三千世界.
暗物质存在吗?
答案是肯定的.
二十世纪30年代,瑞士天文学家茨威基发表了一个惊人结果:在星系团中,看得见的星系只占总质量的1/300以下,而99%以上的质量是看不见的。茨威基首先发现了暗物质的存在,他的发现大大推动了物理学的发展,他对科学的重大贡献是不可估量的。但当时许多人并不相信茨威基的结果。由于暗物质根本不与光发生作用,更不会发光,在天文上用光的手段绝对看不到暗物质。
那么暗物质是如何被科学家发现的呢?大家知道,万物之间存在万有引力,太阳系的九大行星围绕太阳旋转,越往外其转动的速度越低,比如地球绕日速度是每秒30公里,高于火星,而火星的速度又高于位于它之外的木星,这是典型的中间有一颗大恒星的行星系表现。二十世纪70年代初,科学家在观测宇宙其他一些星系(包括银河系)中的恒星运行速度时就发现,越往外,围绕中心的速度并不都是衰减下去,而是和内圈恒星的速度差不多。这与越往外,物质越少,引力也越小,速度也应该越低的常规不符。由此反推,此时虽然外圈的那些能被直接观测到、数出来的星星数目变少了,但其实内部的物质数量并没有减少,引力也没有变小,只不过观测不到而已,科学家们大胆地猜测:宇宙中一定有某些物质没有被我们的天文观测所发现,这些物质被称为“暗物质”。
UGC10214星系是天文学家们发现的一个典型例子,其中的物质不停地向它自己的外围流出,但在其外围却看不到任何别的星系存在。据猜测,该星系的旁边存在着一种“暗星系”,这些物质流就是在暗星系引力的作用下才流出来的。
科学家认为,通过测量物体围绕星系转动的速度可以找到暗物质存在的证据。根据人造卫星运行的速度和高度,就可以测出地球的总质量。根据地球绕太阳运行的速度和地球与太阳的距离,就可以测出太阳的总质量。同理,根据物体(星体或气团)围绕星系运行的速度和该物体距星系中心的距离,就可以估算出星系范围内的总质量。计算的结果发现,星系的总质量远大于星系中可见星体的质量总和,推算的结果:星系中的暗物质约占宇宙物质总量的20-30%。
暗能量的存在,将改变我们对世界的根本看法.因为暗能量在宇宙中占有很大的比重,显然它对宇宙世界会发生巨大的作用,但是,我们对它却一无所知.
2003年7月23日,美国匹兹堡大学斯克兰顿博士领导的一个多国科学家小组宣布,他们借助美国“威尔金森微波各向异性探测器”的观测数据,发现了暗能量存在的直接证据。探测结果显示,宇宙年龄约为137亿年,宇宙由23%的暗物质,73%的暗能量,4%的普通物质组成。宇宙中所占比例最多的东西反而是人类最迟也是最难了解的,至今仅知道它们存在着,但还不清楚它们的性质。斯克兰顿等人介绍说,如果星系主要由普通物质组成,那么光子在落入“引力陷阱”以及从中逃逸出来的过程中,由于“陷阱”深度固定,其能量总体上将不会变化。但是,如果星系中包含暗能量,情况就会不同。由于暗能量的排斥力作用,光子在落入“引力陷阱”并逃出来的过程中,“陷阱”会逐渐变浅,能量反而增加。体现在微波背景辐射观测图上,经过这些星系区域的宇宙微波背景辐射温度将出现细微上升。斯克兰顿博士等发现,经过一些大质量星系区域的宇宙微波背景辐射温度确实出现了微升。科学家认为,这一结果只有用暗能量才能予以解释。普通物质是那些在一般情况下能用眼睛或借助工具看得着的东西,即使藏身于最黑暗的角落,只要有光照总能发现它们。
暗能量在宇宙中更像是一种背景,让人根本感觉不到它的存在,但它确实存在,且起着非同一般的作用。有人把暗能量称为“真空能”。上世纪20、30年代,就有科学家认为真空不空,只是物理的探测仪器探测不到“真空”中并非真的什么都没有。对暗能量理论上的猜测可追溯到爱因斯坦年代,1915年爱因斯坦提出了广义相对论,这是自牛顿时代以来第一次出现的重力理论。
1917年,他将广义相对论公式应用到整个宇宙,想看看能否获得对宇宙本质的新认识。世界上的物理学家、数学家随即开始解其中的引力方程,方程有两种解,结论是宇宙不会完全静止,宇宙没有静止点。方程的第一种解是,如果宇宙只存在引力,没有别的力作用的话,出于相互吸引,宇宙不可能静止.方程的另一种解是,宇宙爆炸的那一瞬间获得了一个初速度,向外膨胀,但由于引力作用往回拉,宇宙肯定越胀越慢,所以宇宙不是膨胀就是收缩,不可能静止。
爱因斯坦觉得从哲学思想上分析,这两种解都不合适,按他的想法宇宙应该是静止的,不能永不停息的运动。因此,爱因斯坦又向广义相对论引力方程中引入了一项“宇宙常数”。这个宇宙常数起排斥力的作用,有了该常数之后,引力方程同时具备了引力和斥力,正好能够达到平衡,可让宇宙“静止”下来。
上世纪20年代,美国著名天文学家哈勃经过观测发现,宇宙确实是在不断膨胀,他根据星系的距离和运行速度证实,离我们越远的星系向外运动的速度越快,这是宇宙正在膨胀的表现。这一观测结果完全与引入“宇宙常数”之前的引力方程的计算结果相契合,迅速得到了世界上绝大多数科学家的认可。爱因斯坦本来是想把宇宙“静止”下来,但实际的宇宙是在膨胀着。他认为:“引入宇宙常数是我这一生所犯的最大错误!”.但爱因斯坦提出的“宇宙常数”并未被科学家们遗弃,一小部分科学家此后在将观测结果与理论进行对比的时候,常常会把此常数捎带上。如果计算结果显示“宇宙常数”等于0,就证明该数确实不能用;反之,就证明爱因斯坦引入一个常数的思路是对的。1997年哈勃太空望远镜拍摄到一颗超新星,编号为“1997ff”。美国马里兰州太空望远镜研究所和劳伦斯伯克利国家实验室的天文学家通过对该超新星光线的相对强度进行的研究表明,“ 1997ff”爆发于110亿年前,是迄今发现的最遥远的超新星,超新星即爆炸中的恒星,它发出的亮度是几十亿颗恒星亮度的总和。测定超新星的亮度,可以用来判断宇宙膨胀的速率。在宇宙减速膨胀中诞生的星体,其发出的光到达地球时,该星体和地球之间的距离由于膨胀减速的原因要比预计的近,因而地球上的观测者会发现其光要比预计中更亮。经过大量的计算和分析,科学家们确认“ 1997ff”的亮度是预计正常亮度的两倍,比距离更近、更年轻的超新星爆炸发出的光还要亮。科学家们据此判定,这颗超新星爆发于宇宙的减速膨胀阶段。
科学家们指出,新发现和此前的观测结论相结合,证实了宇宙膨胀先减速后加速,同时也证明宇宙中确实存在“暗能量”。
“暗能量”据认为更接近能量,而非物质。科学家认为,与暗物质一样,“暗能量”构成了宇宙中不可见的一部分。科学家估计“暗能量”可能占据了宇宙成分的三分之二,对它的了解对于理解时间、空间、物质和能量具有关键作用。爱因斯坦没有想到,当初他认为是错误的“宇宙常数”——暗能量,竟然是极有道理的,几乎可称得上是宇宙的本质。
暗物质和暗能量的存在是以前人类无法想象的事情,随着暗物质、暗能量被证实存在,并证实它们在宇宙中占有很大比重,人们的观念受到极大的冲击和突破。“宇宙由暗物质组成并因暗能量而彼此分开”这一难以理解而且违反常理的宇宙模型,科学家们已经开始研究一系列新问题,进一步探索这些“不可见宇宙”如何影响银河系和宇宙的过去、现在和未来。可以相信,人类最终一定能够理解宇宙的起源。
几十年前,暗物质刚被提出来时仅仅是理论的产物,但是现在我们知道暗物质已经成为了宇宙的重要组成部分。暗物质的总质量是普通物质的6倍,在宇宙能量密度中占了1/4,同时更重要的是,暗物质主导了宇宙结构的形成。暗物质的本质现在还是个谜,但是如果假设它是一种弱相互作用亚原子粒子的话,那么由此形成的宇宙大尺度结构与观测相一致。不过,最近对星系以及亚星系结构的分析显示,这一假设和观测结果之间存在着差异,这同时为多种可能的暗物质理论提供了用武之地。通过对小尺度结构密度、分布、演化以及其环境的研究可以区分这些潜在的暗物质模型,为暗物质本性的研究带来新的曙光。
许多宇宙学家相信我们的宇宙是平直的,而且宇宙总能量密度必定是等于临界值的(这一临界值用于区分宇宙是封闭的还是开放的)。与此同时,宇宙学家们也倾向于一个简单的宇宙,其中能量密度都以物质的形式出现,包括4%的普通物质和96%的暗物质。但事实上,观测从来就没有与此相符合过。虽然在总物质密度的估计上存在着比较大的误差,但是这一误差还没有大到使物质的总量达到临界值,而且这一观测和理论模型之间的不一致也随着时间变得越来越尖锐。
当意识到没有足够的物质能来解释宇宙的结构及其特性时,暗能量出现了。暗能量和暗物质的唯一共同点是它们既不发光也不吸收光。从微观上讲,它们的组成是完全不同的。更重要的是,象普通的物质一样,暗物质是引力自吸引的,而且与普通物质成团并形成星系。而暗能量是引力自相斥的,并且在宇宙中几乎均匀的分布。所以,在统计星系的能量时会遗漏暗能量。因此,暗能量可以解释观测到的物质密度和由暴涨理论预言的临界密度之间70-80%的差异。之后,两个独立的天文学家小组通过对超新星的观测发现,宇宙正在加速膨胀。由此,暗能量占主导的宇宙模型成为了一个和谐的宇宙模型。
暗能量同时也改变了我们对暗物质在宇宙中所起作用的认识。按照爱因斯坦的广义相对论,在一个仅含有物质的宇宙中,物质密度决定了宇宙的几何,以及宇宙的过去和未来。加上暗能量的话,情况就完全不同了。首先,总能量密度(物质能量密度与暗能量密度之和)决定着宇宙的几何特性。其次,宇宙已经从物质占主导的时期过渡到了暗能量占主导的时期。大约在"大爆炸"之后的几十亿年中暗物质占了总能量密度的主导地位,但是这已成为了过去。现在我们宇宙的未来将由暗能量的特性所决定,它目前正时宇宙加速膨胀,而且除非暗能量会随时间衰减或者改变状态,否则这种加速膨胀态势将持续下去。
不过,我们忽略了极为重要的一点,那就是正是暗物质促成了宇宙结构的形成,如果没有暗物质就不会形成星系、恒星和行星,也就更谈不上今天的人类了。宇宙尽管在极大的尺度上表现出均匀和各向同性,但是在小一些的尺度上则存在着恒星、星系、星系团、巨洞以及星系长城。而在大尺度上能过促使物质运动的力就只有引力了。但是均匀分布的物质不会产生引力,因此今天所有的宇宙结构必然源自于宇宙极早期物质分布的微小涨落,而这些涨落会在宇宙微波背景辐射(CMB)中留下痕迹。然而普通物质不可能通过其自身的涨落形成实质上的结构而又不在宇宙微波背景辐射中留下痕迹,因为那时普通物质还没有从辐射中脱耦出来。另一方面,不与辐射耦合的暗物质,其微小的涨落在普通物质脱耦之前就放大了许多倍。在普通物质脱耦之后,已经成团的暗物质就开始吸引普通物质,进而形成了我们现在观测到的结构。因此这需要一个初始的涨落,但是它的振幅非常非常的小。这里需要的物质就是冷暗物质,由于它是无热运动的非相对论性粒子因此得名。
但是如果我们不了解暗物质的性质,就不能说我们已经了解了宇宙。现在已经知道了两种暗物质--中微子和黑洞。但是它们对暗物质总量的贡献是非常微小的,暗物质中的绝大部分现在还不清楚。这里我们将讨论暗物质可能的候选者,由其导致的结构形成,以及我们如何综合粒子探测器和天文观测来揭示暗物质的性质。
暗物质和暗能量是世纪谜题
21世纪初科学最大的谜是暗物质和暗能量。它们的存在,向全世界年轻的科学家提出了挑战。 暗物质存在于人类已知的物质之外,人们目前知道它的存在,但不知道它是什么,它的构成也和人类已知的物质不同。在宇宙中,暗物质的能量是人类已知物质的能量的5倍以上。
暗能量更是奇怪,以人类已知的核反应为例,反应前后的物质有少量的质量差,这个差异转化成了巨大的能量。暗能量却可以使物质的质量全部消失,完全转化为能量。宇宙中的暗能量是已知物质能量的14倍以上。
暗物质和暗能量的存在,导致宇宙之外可能有很多宇宙.
围绕暗物质和暗能量,李政道阐述了他最近发表文章探讨的观点。他提出“天外有天”,指出“因为暗能量,我们的宇宙之外可能有很多的宇宙”。 |